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ABSTRACT
We present the first large-scale measurement of smartphone sensor
API usage and stateless tracking on the mobile web. We extend the
OpenWPM web privacy measurement tool to develop OpenWPM-
Mobile, adding the ability to emulate plausible sensor values for
different smartphone sensors such as motion, orientation, proximity
and light. Using OpenWPM-Mobile we find that one or more sensor
APIs are accessed on 3 695 of the top 100K websites by scripts orig-
inating from 603 distinct domains. We also detect fingerprinting
attempts on mobile platforms, using techniques previously applied
in the desktop setting. We find significant overlap between finger-
printing scripts and scripts accessing sensor data. For example, 63%
of the scripts that access motion sensors also engage in browser
fingerprinting.

To better understand the real-world uses of sensor APIs, we
cluster JavaScript programs that access device sensors and then
perform automated code comparison and manual analysis. We find
a significant disparity between the actual and intended use cases of
device sensor as drafted by W3C. While some scripts access sensor
data to enhance user experience, such as orientation detection and
gesture recognition, tracking and analytics are the most common
use cases among the scripts we analyzed. We automated the detec-
tion of sensor data exfiltration and observed that the raw readings
are frequently sent to remote servers for further analysis.

Finally, we evaluate available countermeasures against the mis-
use of sensor APIs. We find that popular tracking protection lists
such as EasyList and Disconnect commonly fail to block most
tracking scripts that misuse sensors. Studying nine popular mobile
browsers we find that even privacy-focused browsers, such as Brave
and Firefox Focus, fail to implement mitigations suggested by W3C,
which includes limiting sensor access from insecure contexts and
cross-origin iframes. We have reported these issues to the browser
vendors.
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1 INTRODUCTION
The dominant mode of web browsing has shifted towards mobile
platforms—2016 saw mobile web usage overtake desktop [74]. To-
day’s smartphones come equipped with a multitude of sensors
including accelerometers, gyroscopes, barometers, proximity and
light sensors [67]. Augmented reality, indoor navigation and immer-
sive gaming are some of the emerging web applications possible
due to the introduction of sensors. The Web’s standardization body,
the W3C, has thus introduced standards to define how to make
sensor data accessible to web applications [80].

Access to the sensors, however, can also create new security
and privacy vulnerabilities. For example, motion sensors can be
exploited to infer keystrokes or PIN codes [14, 51]. Ambient light
level readings can be exploited for sniffing users’ browsing history
and stealing data from cross-origin iframes [61]. Motion sensors
have also shown to be uniquely traceable across websites, allowing
stateless tracking of users [9, 19, 23]. While the W3C’s sensor speci-
fications list these and other security and privacy concerns, they do
not mandate countermeasures. In practice, mobile browsers allow
access to these sensors without explicit user permission, allowing
surreptitious access from JavaScript.

In order to better understand the risks of sensor access, we con-
duct an in-depth analysis of real-world uses and misuses of the
sensor APIs. In particular, we seek to answer the following ques-
tions: 1) what is the prevalence of scripts that make use of sensors?
2) what are the common use cases for accessing sensors? 3) are
sensors used by third-party tracking scripts, specifically those script
which engage in fingerprinting? 4) how effective are existing pri-
vacy countermeasures in thwarting the use of sensors by untrusted
scripts?
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To answer these questions, we perform the first large-scale mea-
surement study of the mobile web with a focus on sensor APIs.
We extend the OpenWPM [31] measurement platform to study the
mobile web, adding emulation of mobile browsing behavior and
browser APIs. We call this extension OpenWPM-Mobile and have
released its source code publicly. Using the JavaScript and HTTP in-
strumentation data provided by OpenWPM-Mobile, we survey the
Alexa top 100K sites. We measure the sensor API access patterns, in
combination with stateless tracking techniques including canvas,
battery, WebRTC and AudioContext fingerprinting. To understand
how sensors are being used in the wild, we develop a clustering
scheme to group similar scripts and then perform manual analysis
to identify use cases. Furthermore, we measure how popular track-
ing protection lists perform against tracking scripts that make use
of sensors.

Below we present a summary of our findings:
Large-scale measurement of sensor API usage (§4). We find
that on 3 695 of the Alexa top 100K sites at least one of motion, ori-
entation, proximity, or light sensor APIs is accessed. By emulating
real sensor data, we were able to determine that many third-party
scripts send raw sensor data to remote servers.
Study of sensor API use through clustering (§5). By clustering
scripts based on features extracted from JavaScript instrumentation
data, we find a significant disparity between the intended use cases
of sensors (as drafted by the W3C) and real-world uses. Sensor
data are commonly used for tracking and analytics, verifying ad
impressions, and distinguishing real devices from bots.
Measurement of fingerprinting on themobile web (§6.1). We
present the first mobile web measurement of the various finger-
printing techniques including canvas, WebRTC, AudioContext, and
battery fingerprinting. We find a significant overlap between the
fingerprinting scripts and the scripts accessing sensor APIs, indi-
cating that sensor data is used for tracking purposes. For example,
we found that 63% of the scripts that access motion sensors also
perform canvas fingerprinting.
Evaluation of existing countermeasures (§6.2 and §6.3). We
evaluate the efficacy of existing countermeasures against track-
ing scripts that use sensor APIs. We measure the rate of blocking
by three popular tracking protection lists: EasyList, EasyPrivacy,
and Disconnect. We find that these lists block the most prevalent
scripts that access sensor; however, they only block 2.5–3.3% of
the scripts overall. We also study the sensor access behavior of
nine popular browsers, and find that browsers, including more pri-
vacy oriented ones such as Firefox Focus and Brave, fail to follow
the W3C recommendation of disallowing access from insecure ori-
gins and cross-origin iframes. We have reported these issues to the
specific browser vendors.

2 BACKGROUND AND RELATEDWORK
2.1 Mobile Sensor APIs
Our study focuses on the following sensor APIs for device motion,
orientation, proximity, and ambient light. Other sensors commonly
present on modern mobile devices such as magnetometer, barome-
ters, and infrared sensors are left out as they are not supported by
browsers. We provide a brief description of the sensors below:

Motion. (devicemotion [68]) Provides acceleration and rotation
rate along three axes using MEMS accelerometers and gyroscopes.
Data type is double-precision floating-point with acceleration val-
ues expressed inms−2 unit and rotation rates expressed in rads−1

or deдs−1 unit.
Orientation. (deviceorientation [80]) Provides alpha, beta and

gamma components which correspond to orientation along the Z,
X and Y axes, respectively. Data type is double-precision floating-
point, specified in deд unit.

Proximity. (deviceproximity [72]) Detects if the phone is close
to ear during a call based on light and infrared sensors. Provides
double-precision floating-point readings in cm units.

Ambient Light. (devicelight [71]) Provides the ambient light
level readings in lux units.

To access sensor data, a script registers an event handler by call-
ing the addEventListener function with the specific sensor event
and event handler functions as arguments. The event handler func-
tion is then called whenever new sensor data is available. A sample
code snippet for registering and accessing motion sensor is given
below:

window.addEventListener("devicemotion", motionHandler);
function motionHandler(evt){
// Access Accelerometer Data
ax = evt.accelerationIncludingGravity.x;
ay = evt.accelerationIncludingGravity.y;
az = evt.accelerationIncludingGravity.z;
// Access Gyroscope Data
rR = evt.rotationRate;
if (rR != null){
gx = rR.alpha;
gy = rR.beta ;
gz = rR.gamma;

}
}

Note that proximity and ambient light sensors were only sup-
ported by Firefox and their support has been deprecated. Never-
theless, our study finds some usage of theses sensors across the
web.

2.2 Different Uses of Sensor Data
W3C has listed the following use cases for device sensors [87]:

• Light: controlling smart home lighting, checking sufficient
light level at work space, calculating camera settings (apper-
ture, shutter speed, ISO) and light-based gesturing.
• Proximity: detecting when device is held close to the mouth
or ear (e.g., WebRTC-based voice call application).
• Motion and Orientation: virtual and augmented reality (head
movement tracking), immersive gaming, activity and gesture
recognition, fitness monitoring, 3D scanning and indoor
navigation.

The potential uses of sensor APIs are not limited to the cases listed
above. In section 5.4, we will summarize the different uses of the
sensor APIs found in the wild.



2.3 Related Work

Sensor Exploitation. Prior studies have shown a multitude of
creative ways to exploit sensor data: inferring keystrokes and PIN
codes using motion sensors [14, 51, 63, 88]; capturing and recon-
structing audio signals using gyroscopes [53]; inferring whether
you are walking, driving, or taking the subway using motion sen-
sors [73, 79]; tracking the metro ride or inferring the route that
was driven using motion data [39, 40]; sniffing users’ browsing
history and stealing data from cross-origin frames using ambient
light level readings [61]; extracting a spatial fingerprint of the sur-
roundings using a combination of acoustic and motion sensors [6];
linking users’ incognito browsing sessions to their normal browsing
sessions using the timing of the devicemotion event firings [82].
Browser Fingerprinting. Mayer [49] first explored the idea of
using browser “quirks” to fingerprint users; the the Panopticlick
project was the first to show that browser fingerprinting can be done
effectively at scale [29]. In 2012, Mowery and Shacham introduced
canvas fingerprinting, which uses HTML5 canvas elements and
WebGL API to fingerprint the fonts and graphic rendering engine
of browsers [56]. Finally, several measurement studies have shown
the existence of these advanced tracking techniques in the wild [1,
2, 31, 58, 60]. Recently, browser extensions have been shown to be
fingerprintable [78]. Cao et al. recently proposed ways in which it
is possible to identify users across different browsers [15]. Vastel et
al. have also shown that in spite of browser fingerprints evolving
over time they can still be linked to enable long-term tracking [85].

As mobile browsing became more common, researchers explored
different ways to fingerprint mobile devices and browsers. Hard-
ware and software constraints on mobile platforms often lower
the fingerprinting precision for mobile browsers [29, 41, 76]. In
2016, however, Laperdrix et al. showed that fingerprinting mobile
devices can be effective, mainly thanks to user agent strings, and
emojis, which are rendered differently across mobile devices [48].
Others have looked at uniquely identifying users by exploiting the
mobile configuration settings, which are often accessible to mobile
apps [46].

Researchers have also studied ways to mitigate browser finger-
printing. Privaricator [59] and FPRandom [47] are two approaches
that add randomness to browser attributes to break linkability
across multiple visits. Besson et al. formalized randomization de-
fense using quantitative information flow [8]. FP-Block [81] is an-
other countermeasure that defends against cross-domain tracking
while still allowing first-party tracking to improve usability. Some
browsers such as Tor browser and Brave by default protect against
various fingerprinting techniques [11, 65].
Device Fingerprinting. It is also possible to use unique charac-
teristics of the user’s hardware instead of, or in addition to, browser
software properties for fingerprinting purposes. One of the early
and well-known results showed that computers can be uniquely
fingerprinted by their clock skew rate [55]. Later on, researchers
were able to show that such tracking can be done on the Internet
using TCP and ICMP timestamps [44].

In recent years, researchers have looked into fingerprinting
smartphones through embedded sensors. Multiple studies have
looked at uniquely characterizing the microphones and speakers

embedded in smartphones [9, 18, 89]. Motion sensors such as ac-
celerometers and gyroscopes have also shown to exhibit unique
properties, enabling apps and websites to uniquely track users on-
line [9, 19, 20, 23]. The HTML5 battery status API has also been
shown to be exploitable; specially old and used batteries with re-
duced capacities have been shown to potentially serve as tracking
identifiers [62].

Taking a counter perspective, researchers have also explored the
potential of using browser and device fingerprinting techniques to
augment web authentication [4, 66, 83]. In this setting, fingerprints
collected using the sensor or other APIs serve as an additional factor
for authentication. Device fingerprinting has also been proposed
as a way to distinguish users browsing real devices from bots or
other emulated browsers [13].

In this paper we focus on the tracking-related use of sensors
embedded in smartphones. Our goal is not to introduce new fin-
gerprinting schemes or evaluate the efficacy of existing techniques.
Rather we identify the real-world uses of sensors APIs by analyzing
data from the first large-scale mobile-focused web privacy measure-
ment. Moreover, we highlight the substantial disparity between the
intended and actual use of smartphone sensors.

3 DATA COLLECTION AND METHODOLOGY
3.1 OpenWPM-Mobile
Our data collection is based onOpenWPM-Mobile, a mobile-focused
measurement tool we built by modifying OpenWPM web measure-
ment framework [31].1 OpenWPM has been developed to measure
web tracking for desktop browsers and hence it uses the desktop
version of Firefox browser as a part of its platform. To capture
the behavior for mobile websites, we heavily modified OpenWPM
platform to imitate a mobile browser. This was essential for per-
forming large-scale crawls of websites, as mobile browsers have
more limited instrumentation capability. We specifically emulate
Firefox on Android, as it uses the same Gecko layout engine as the
desktop Firefox used in the crawls; it is also the only browser that
supports all four of the sensor APIs that we study.2

We extended OpenWPM’s JavaScript instrumentation to inter-
cept access to sensor APIs. In particular, we logged calls to the add-
EventListener function, along with the function arguments and
stack frames. We also used OpenWPM’s standard instrumenta-
tion that allowed us to detect fingerprinting attempts including
canvas fingerprinting, canvas-font fingerprinting, audio-context
fingerprinting, battery fingerprinting and WebRTC local IP discov-
ery [31].

Sites are known to produce different pages and scripts for mo-
bile browsers; to ensure that we would see the mobile versions,
we took several steps to realistically imitate Firefox for Android.
This involved overriding navigator object’s user agent, platform,
appVersion and appCodeName strings; matching the screen resolu-
tion, screen dimensions, pixel depth, color depth; enabling touch
status; removing plugins and supported MIME types that may in-
dicate a desktop browser. We also adjusted the preferences used

1The source code for OpenWPM-Mobile can be found at: https://github.com/sensor-js/
OpenWPM-mobile
2Firefox released a version that disables devicelight and deviceproximity events on
May 9th, 2018 [43].
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to configure Firefox for Android such as hiding the scroll bars
and disabling popup windows. We relied on the values provided
in the mobile.js3 script found in the Firefox for Android source
code repository. To mitigate detection by font-based fingerprint-
ing [2, 31], we uninstalled all fonts present on crawler machines
and installed fonts extracted from a real smartphone (Moto G5 Plus)
with an up-to-date Android 7 operating system.

To make sure that our instrumented browser looked realistic, we
used fingerprintjs2 [84] library and EFF’s Panopticlick test suite [30]
to compare OpenWPM-Mobile’s fingerprint to the fingerprint of a
Firefox for Android running on a real smartphone (Moto G5 Plus).
We found that OpenWPM-Mobile’s fingerprint matched the real
browser’s fingerprint except Canvas and WebGL fingerprints. Since
these two fingerprints depend on the underlying graphics hardware
and exhibit a high diversity even among the mobile browsers [48],
we expect that sites are unlikely to disable mobile features solely
based on these fingerprints.

3.2 Mimicking Sensor Events
Since the browser we used for crawling is not equipped with real
sensors, we added extra logic into OpenWPM-Mobile to trigger
artificial sensor events with realistic values for all four of the de-
vice APIs. We ensured that the sensor values were in a plausible
range by first obtaining them from real mobile browsers through a
test page. To allow us to trace the usage of these values through
scripts, we used a combination of fixed values and a small random
noise. For instance, for the alpha, beta and gamma components of
the deviceorientation event, we used 43.1234, 32.9876, 21.6543 as
the base values and added random noise with five leading zeros
(e.g., 0.000005468). This fixed base values allowed us to track sensor
values that are sent within the HTTP requests. The random noise,
on the other hand, prevented unrealistic sensor data with fixed
values.

3.3 Data Collection Setup
We crawl the Alexa top 100K ranked4 websites [5] using OpenWPM-
Mobile. The crawling machines are hosted in two different geo-
graphical locations; one in the United States, at the University of
Illinois, and the other in Europe, at a data center in Frankfurt. We
conducted two separate crawls of the top 100K sites in US (produc-
ing crawls US1, collected May 17–21, 2018 and US2, collected May

3https://dxr.mozilla.org/mozilla-esr45/source/mobile/android/app/mobile.js
4Using rankings dated May 12, 2018.

Table 1: Overview of different types of low-level features.

Feature name format Operation

get_symbolName Property lookup
set_symbolName Property assignment
call_functionName Function call
addEventListener_eventName addEventListener call

27–June 1, 2018) and one from Germany (EU1, collected May 17–21,
2018). US1 is our default dataset and thus majority of our analysis is
evaluated on US1; the other crawls are analyzed in section 4.3. Fig-
ure 1 highlights the overall data collection and processing pipeline.
We are making our data sets available to other researchers [17].

3.4 Feature Extraction
To be able to characterize and analyze script behavior, we first
represent script behavior as vectors of binary features. We extract
features from the JavaScript and HTTP instrumentation data col-
lected during the crawls. For each script we extract two types of
features: low- and high-level, as described below.
Low-level features: Low-level features represent browser prop-
erties accessed and function calls made by the script. OpenWPM in-
struments various browser properties relevant to fingerprinting and
tracking using JavaScript getter and setter methods. We define two
corresponding features: get_SymbolName that is set to 1 when a par-
ticular property is accessed and set_SymbolName that is set when
a property is written to. For example, a script that reads the user-
agent property would have the get_window.navigator.userAgent
feature, and a script that sets a cookie would have the set_win-
dow.document.cookie feature.

OpenWPM also tracks a number of calls to JavaScript APIs
that are related to fingerprinting, such as HTMLCanvasElement.
toDataURL and BatteryManager.valueOf. We represent calls with
a call_functionName feature. We create a special set of features
for the addEventListener call to capture the type of event that the
scripts are listening for. For example:

window.addEventListener("devicemotion",. . .)
would result in the addEventListener_devicemotion feature being
set for the script. The four types of low-level features are summa-
rized in Table 1.
High-level features: The high-level features capture the track-
ing related behavior of scripts. The features include whether a

Figure 1: Overview of data collection and processing work flow.
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script is using different browser fingerprinting techniques, such as
canvas or audio-context fingerprinting, and whether the script is
blocked by certain adblocker list or not. We use techniques from
existing literature [1, 31] to detect fingerprinting techniques. We
check the blocked status of the script by using three popular ad-
blocking/tracking protection lists: EasyList [27], EasyPrivacy [28],
and Disconnect [25]. The full list of high-level features are given in
Table 2.

3.5 Feature Aggregation
We produce a feature vector for each script loaded by each site in
the crawl. For analysis purpose, we aggregate these feature vectors
in three different ways: site, domain, and url. Site-level aggregation
considers the features used by all the scripts loaded by a given
site. Domain-level aggregation captures all the scripts (across all
sites) that are served from a given domain, to identify major players
who perform sensor access. We use the Public Suffix + 1 (PS+1)
domain representation, which are commonly used in the web pri-
vacy measurement literature to group domains issued to a single
entity [50, 57]. We also group accesses by script URL to capture the
use of the same script across different sites. When performing this
grouping, we discard the fragment and query string URL compo-
nents [7] (i.e., the part of the URL after the ?, & or # characters),
as these are often used to pass script parameters or circumvent
caching.

When performing this aggregation, we essentially compute a
binary OR of the feature vectors of the individual instances that
we incorporate. In other words, if any member of the grouping
exhibits a certain feature, the feature is assigned to a script. For
example, if any script served by a given domain performs canvas
fingerprinting, we assign the canvas_fingerprinting feature for that
domain.

4 MEASUREMENT RESULTS
In this section, we will first highlight the overall prominence of
scripts accessing different device sensors. Next, we showcase differ-
ent ways in which scripts send raw sensor data to remote servers.
Lastly, we will look at the stability of our findings across different
crawls taking place in the same geolocation and across different
geolocations. US1 is our default dataset unless stated otherwise.

4.1 Prevalence of Scripts
First, we look at how often are device sensors accessed by scripts.
Table 3 shows that sensor APIs are accessed on 3 695 of the 100K
websites by scripts served from 603 distinct domains. Orientation
and motion sensors are by far the most frequently accessed, on
2 653 and 2 036 sites respectively. This can be explained by common
browser support for these APIs. Light and proximity sensors, which
are only supported by Firefox, are accessed on fewer than 200 sites
each.

Table 3: Overview of script access to sensor APIs. Columns
indicate the number of sites and distinct script domains (i.e.,
domains from where scripts are served), respectively.

Sensor Num. of
sites

Num. of
script domains

Motion 2653 384
Orientation 2036 420
Proximity 186 50
Light 181 35

Total 3695 603

We also look at the distribution of the sensor-accessing scripts
among the Alexa top 100K sites. Figure 2 shows the distribution
of the scripts across different ranked sites. Interestingly, we see
that many of the sensor-accessing scripts are being served on top
ranked websites. Table 4 gives a more detailed overview of the most
common scripts that access sensor APIs. The scripts are represented
by their Public Suffix + 1 (PS+1) addresses. In addition we calculated
the prominencemetric developed by Englehardt andNarayanan [31],
which captures the rank of the different websites where a given
script is loaded and sort the scripts according to this metric.

Table 4 shows that scripts from serving-sys.com, which belongs
to advertising company Sizmek [75], access motion sensor data on
815 of the 100K sites crawled. Doubleverify, which has a very simi-
lar prominence score, provides advertising impression verification
services [26] and has been known to use canvas fingerprinting [31].
The most prevalent scripts that access proximity and light sensors
commonly belong to ad verification and fraud detection companies
such as b2c.com and adsafeprotected.com. Both scripts also use
battery and AudioContext API fingerprinting.

Although present on only 417 sites, alicdn.com script has the
highest prominence score (0.3303) across all scripts. This is largely

Table 2: The list of high-level features and reference to methodology for detection.

High-level feature name Description & Reference

audio_context_fingerprinting Audio Context API fingerprinting via exploiting differences in the audio processing engine [31]
battery_fingerprinting Battery status API fingerprinting via reading battery charge level and discharge time [62]
canvas_fingerprinting Canvas fingerprinting via exploiting differences in the graphic rendering engine [1, 31]
canvas_font_fingerprinting Canvas font fingerprinting via retrieving the list of supported fonts [31]
webrtc_fingerprinting WebRTC fingerprinting via discovering public/local IP address [31]
easylist_blocked Whether blocked by EasyList filter list [27]
easyprivacy_blocked Whether blocked by EasyPrivacy filter list [28]
disconnect_blocked Whether blocked by Disconnect filter list [25]



Table 4: Top script domains accessing device sensors sorted by prominence [31]. The scripts are grouped by domain tominimize
over counting different scripts from each domain.

Sensor Script Domain Num. sites Min. Rank Prominence EasyList
blocked

EasyPrivacy
blocked

Disconnect
blocked

Motion
serving-sys.com 815 67 0.0485 0 1 1
doubleverify.com 517 187 0.0453 1 0 0
adsco.re 648 570 0.0275 1 0 0

Orientation
alicdn.com 417 9 0.3303 0 0 0
adsco.re 648 570 0.0275 1 0 0
yieldmo.com 83 100 0.0263 1 0 1

Proximity
b2c.com 108 498 0.0114 0 1 0
adsafeprotected.com 36 1418 0.0023 1 0 1
allrecipes.com 1 1216 0.0008 0 0 0

Light
b2c.com 108 498 0.0114 0 1 0
adsafeprotected.com 36 1418 0.0023 1 0 1
allrecipes.com 1 1216 0.0008 0 0 0

Figure 2: Distribution of sensor-accessing scripts across var-
ious ranked intervals.

because a script originating from alicdn.com accessed device orien-
tation data on five of the top 100 sites—including taobao.com (Alexa
global rank 9), the most popular site in our measurement where
we detected sensor access—and thus this script is served to a very
large user base. Table 5 shows the breakdown of sensor-accessing
scripts in terms of first and third parties. While web measurement
research commonly focuses on third-party tracking [50], we find
that first-party scripts that access sensor APIs are slightly more
common than third-party scripts. Our sensor exfiltration analysis
of the scripts in section 4.2 revealed that many bot detection and
mitigation scripts such as those provided by perimeterx.net and
b2c.com are served from the clients’ first party domains.

4.2 Sensor Data Exfiltration
After uncovering scripts that access device sensors, we investigate
whether scripts are sending raw sensor data to remote servers.
To accomplish this we spoof expected sensor values, as described
in section 3.2. We then analyze HTTP request headers and POST
request bodies obtained through OpenWPM’s instrumentation to
identify the presence of spoofed sensor values. We found several

Table 5: Number of sensor-accessing scripts served from
first-party domains vs. third-party domains.

Num. of
first party

Num. of
third party Total

Motion 364 137 501
Orientation 350 300 650
Proximity 40 56 96
Light 30 52 82

Any sensor 518 398 916

domains to access and send raw sensor data to remote servers either
in clear text or in base64 encoded form.

Table 6 highlights the top ten script domains that send sensor
data to remote servers. perimeterx.com (a bot detection company)
and b2c.com (ad fraud detection company) are the most prevalent
scripts that exfiltrate sensor readings. In addition, we found that
priceline.com and kayak.com serve a copy of the perimeterx.com
script from their domain (as a first-party script), which in turn reads
and sends sensor data. These scripts send anywhere between one
to tens of sensor readings to remote servers. Majority of the scripts
(eight of ten) encode sensor data before sending it to a remote
server. Appendix C lists examples of scripts sending sensor data to
remote servers. We also found that certain scripts send statistical
aggregates of sensor readings, and others obfuscate the code that
is used to process sensor data and send it to a remote server. More
examples are available in section 5.5.

While detecting exfiltration of spoofed sensor values, we use
HTTP instrumentation data provided by OpenWPM. Since Open-
WPM captures HTTP data in the browser (not on the wire, after
it leaves the browser), our analysis was able to cover encrypted
HTTPS data as well.



1012 832
421

156

166 51

2096

US1 US2

EU1

No. of sites

100 200
79

84

113 14

624

US1 US2

EU1

No. of script URLs

24 35
58

17

23 6

498

US1 US2

EU1

No. of script domains
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Table 6: Domains of the scripts that send spoofed sensor data
to remote servers.

Domain (PS+1) Sensors∗ Encoding # of Top
sites site

b2c.com A, O, P, L base64 53 498
perimeterx.net A base64 45 247
wayfair.com A base64 7 1136
moatads.com O raw 5 3616
queit.in A, O raw 3 22935
kayak.com A base64 1 982
priceline.com A base64 1 1573
fiverr.com A base64 1 541
lulus.com A base64 1 4470
zazzle.com A base64 1 5860
∗ ‘A’: accelerometer, ‘G’: gyroscope, ‘O’: orientation, ‘P’: proximity, ‘L’: light

4.3 Crawl Comparison
In this section, we compare the results from our three data sets,
US1, US2, and EU1. Figure 3 highlights the overlap and differences
between the three crawls, presented as a Venn diagram. We conjec-
ture that there are two main reasons for the observed differences
between the results. First, most popular web sites are dynamic and
change the ads, and sometimes the contents, that are displayed
with each load. This is supported by the fact that although there
are significant differences between the sites where sensors were
accessed, the overlap between script URLs and domains is generally
high.

Second, the location of the crawl appears to make a difference.
The script domains in the two US crawls have more overlap (Jaccard
index 0.86) than when comparing either US crawl to the one from
the EU (Jaccard indices 0.79 and 0.83), even though all three were
collected around the same time period. The absolute number of
sites accessing sensors in the EU crawl was also smaller than in
the US crawls by about a third (EU1: 2 469, US1: 3 695, US2: 3 400).
It is possible that stricter privacy regulation in the EU, such as
the EU’s General Data Protection Regulation (GDPR) [32], may be

responsible for this disparity, but we leave a full exploration of this
question as future work.

5 UNDERSTANDING SENSOR USE CASES
Having identified scripts that access sensor APIs, we next focus
on identifying the purpose of these scripts. To make this analysis
tractable, we first use clustering to identify groups of similar scripts
and then manually analyze the sensor uses cases.

5.1 Clustering Methodology

Clustering Process. In this section we will briefly describe the
overall clustering process. We cluster JavaScript programs in three
phases to generalize the clustering result as much as possible, and
to accommodate for clustering errors that may have been caused
by random noise introduced by the potentially varying behavior of
scripts, such as incomplete page loads or intermittent crawler fail-
ures. Figure 4 highlights the three phases of the clustering process.

DBSCAN Merge Classify
JS Cluster

Figure 4: The three phases for clustering scripts.

In the first phase, we apply off-the-shelf DBSCAN [69], a density-
based cluster algorithm, to generate the initial clusters, using the
script features described in Section 3. In the second phase, we try
to generalize the clustering results by merging clusters that are
similar. We do this in an iterative manner where in each round we
determine the pair of clusters, merging which would result in the
least amount of reduction in the average silhouette coefficient.5 This
process is repeated until any new merges would reduce the average
silhouette coefficient reduced by more than a given threshold (δ ).

In the last phase, we try to see if certain samples that are catego-
rized as noisy can be classified into one of the other core clusters.
The reason behind this step is to see if certain scripts were incor-
rectly clustered due to differences in their behavior across different
5Here, we only consider clusters that are not labeled as noisy



websites. The same script may exhibit a different behavior when
publishers (first parties) use different features of the script, or when
the script execution depends on the loading of dynamic content
such as ads. To perform classification we use a random forest clas-
sifier [70], where the non-noisy cluster samples, labeled with their
corresponding cluster label, serve as the training data. We then
try to classify the noisy samples as members of one of the core
clusters. We relabel the scripts only if the prediction probability by
the classifier is greater than a given threshold (θ ). Pseudo-code (in
Python) for the three phases is provided in appendix A.
ValidationMethodology. To validate our clustering results and to
determine the different use cases for accessing sensor data we take
the following two steps: First, we generate an average similarity
score per cluster by computing the pairwise code difference between
two scripts using the Moss tool [3]. Next, if the average similarity
score for a given cluster is lower than a certain threshold (ϵ), we
manually analyze five random scripts from that cluster, otherwise
(if higher than the threshold) we manually analyze three random
scripts per cluster.

For manual analysis we follow a protocol of steps given below:
• Inspect the code description, copyright statements, software
license, links to public repositories, if any, to search for any
stated purpose of the script.
• Statically analyze the registered sensor event listeners to
determine how sensor data is used.
• If static analysis fails (e.g., due to obfuscation), load a page
that embeds the script and debug over the USB, using Chrome
developer tools with break points enabled for sensors event
listeners, to analyze runtime behavior.
• Check if sensor data is leaving the browser, i.e., if the script
makes any HTTP/HTTPS requests containing sensor data.
• If the script sends some encoded data, try decoding the pay-
load.

5.2 Clustering Scripts
We next describe the detailed process and results of clustering the
scripts. We first try to cluster scripts based on low-level features de-
scribed in section 3.4. Recall that low-level features include browser
properties accessed (by either get or set method) and function calls
made (using call or addEventListener) by the script. The reason
behind the use of low-level features is that it provides us with
a comprehensive overview of the script’s functionality. We start
by only considering scripts that access any of the four sensors
we study: motion, orientation, proximity or light. We found 916
such scripts in our US1 dataset. Next, we cluster these scripts us-
ing DBSCAN [69]. Figure 5 highlights the clustering results where
the x axis represents the silhouette coefficient per cluster. We see
that there are 39 distinct clusters generated by DBSCAN, of which
around 24% scripts are labeled as noisy (i.e., scripts that are labeled
as ‘-1’). The red and blue vertical lines in the figure present the
average silhouette coefficient with and without the noisy samples,
respectively.

In order to generalize our clustering results we attempt to merge
similar clusters, i.e., clusters that result in the least amount of re-
duction in silhouette coefficient when merged (see appendix A for
code). We set the total reduction in silhouette coefficient to 0.01
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Figure 5: Clustering scripts based on low-level features.

(i.e., δ = 0.01). Doing so reduces the total number of clusters to 36
but certain clusters such as cluster number 37 becomes a bit more
noisy. Figure 6 highlight the merged clustering results.
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Figure 6: Merging similar clusters until average silhouette
coefficient reduce by 0.01.

Finally, we check if certain noisy samples (i.e., scripts that are
labeled as ‘-1’) can be classified into one of the other core clusters



with a certain probability. To do this we use a random forest clas-
sifier, where scripts from non-noisy clusters (i.e., clusters that are
labeled with a value ≥ 0) are used as training data and scripts that
are noisy are used as testing data. We only relabel noisy samples
if the prediction probability, θ ≥ 0.7.6 Also we update labels in
batches of five samples at a time. Figure 7 highlights the outcome
of this final step. This reduces the total fraction of scripts labeled as
noisy from 24% to 21%. However, as evident from Figure 7 this also
increases the chance of certain clusters becoming slightly more
noisy (e.g., clusters 16). The average silhouette coefficient with-
out the remaining noisy samples (i.e., ignoring the cluster labeled
as ‘-1’) after this phase is close to 0.8 which is an indication that
the clustering outcomes are within an acceptable range. For un-
derstanding the impact geo-location, we also ran our clustering
techniques on the EU1 dataset and obtained similar results. We
found a total of 46 clusters with approximately 23% of the scripts
labeled as noisy. In section 5.4, we will briefly discuss how in spite
of the total number of clusters being larger compared to the US1
dataset they represent similar use cases.
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Figure 7: Classifying noisy samples using non-noisy sam-
ples as ground truth, only if prediction probability ≥ 0.7.

5.3 Validating Clustering Results
We use the Moss [3] service, which measures source code similarity
to detect plagiarism, in order to validate the results of our clustering.
We use Moss to calculate the similarity scores between pairs of
scripts from the same cluster. For comparison, we also calculate the
similarity between pairs of scripts from different clusters; in this
case, we limit ourselves to five random scripts per cluster due to
the rate limitations imposed by Moss.
6This value was empirically set by manually spot checking how effective the classifi-
cation results were.

We plot the distribution of these scores in Figure 8. We note
that scripts within the same cluster tend to have high similarity; in
particular, 81% of pairs have a similarity score exceeding 0.7. Like-
wise, scripts from different clusters tend to be dissimilar, with 94%
of samples showing a similarity score of 0.1 or less. This suggests
that the clusters are identifying groups of scripts that have high
source-level similarity.

We also compute the average pairwise similarity score for each
cluster to guide our manual analysis. For clusters with high average
pairwise similarity scores (ϵ > 0.7), we manually inspect three
randomly-chosen scripts from each cluster. For clusters with lower
similarity scores, we inspect five random scripts per cluster.7
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Figure 8: Distribution of intra- and inter-cluster similarity.

5.4 Real-world Use Cases
Table 7 summarizes the different use cases that we have identified
through our manual inspection. The table also highlights the aver-
age pairwise code similarity score per cluster, computed through
Moss [3]. It should be noted that the high similarity scores likely
result from sites using or copying code from common libraries,
whereas the low scores result from scenarios where only small
parts of the scripts were either reused or copied from other scripts.
We see that there are broadly seven different use cases for accessing
sensor data, among which around 37% of the scripts collect sensor
data to perform tracking and analytics such as audience recogni-
tion, ad impression verification, and session replay. We also see that
around 18% scripts use sensor data to determine whether a device
is a smartphone or a bot to deter fraud. Interestingly, 70% and 76%
of the scripts described in these two categories, respectively, have
been identified to be doing some combination of canvas, webrtc,
audio_context or battery fingerprinting.

We found similar use cases for the EU1 dataset. Around 19% of the
scripts were found to use sensor data to distinguish bots from real
smartphones. We did, however, see somewhat a lower percentage of
scripts (around 31%) involved in tracking and analytics. We found
this group of scripts to be loaded on only 330 sites whereas for the
US1 dataset this number was more than three times bigger (1198).

7For any clusters with five scripts or fewer, we manually inspect all the scripts.



Table 7: Potential sensor access use cases.

Cluster ID∗ % of # of # of Sites Ranked . . . Avg. Sim.(%) DescriptionJS Sites 1–1K 1K–10K 10K–100K per cluster
34 0.4 4 0 0 4 99 Use sensor data to add entropy to random numbers [77]
7, 19, 20 11.2 114 2 32 80 89, 91, 43 Checks what HTML5 features are offered [22, 24, 54]
0, 3, 5, 12, 18 17.7 413 10 53 350 93, 69, 23, 95, 99 Differentiating bots from real devices [33, 64]22, 25, 27, 31 92, 36, 81, 83
26, 30 3.4 35 1 2 32 37, 60 Parallax Engine that reacts to orientation sensors [86]
6, 14, 33 3.2 103 0 9 94 97, 98, 99 Automatically resize contents in page or iframe [10]
8, 11, 21, 28, 29, 32 6.7 533 18 118 397 99, 96, 99, 11, 43, 89 Reacting to orientation, tilt, shake [35, 42, 45]
1, 4, 9, 10, 13, 15 36.8 1198 24 144 1030 99, 68, 98, 99, 92, 99 Tracking, analytics, fingerprinting and
16, 17, 35, 36, 37 91, 91, 38, 87, 40 audience recognition [34, 75]
-1 20.6 1804 16 176 1612 4 Scripts clustered as noisy
∗ Clusters with bolded IDs consist of scripts that have been identified as performing some combination of canvas, webrtc, audio_context or battery fingerprinting

5.5 Analysis of Specific Scripts
While manually analyzing scripts for clustering validation, we un-
covered interesting uses of the sensor data. Here we will briefly
discuss two such scripts. The first script comes from doublever-
ify.com [26], an ad impression verification company. One of their
scripts computes statistical features such as average and variance
of motion sensor data before sending it to their remote server. Such
statistical features have been shown to be useful for fingerprinting
smartphones [19]. The code segment is provided in appendix B
(Listing 2). Since this script was sending statistical data instead
of raw sensor data it was not captured through our sensor spoof-
ing mechanism. We were only able to identify this via manually
debugging the script on a real smartphone (through USB debug-
ging features of the Chrome Devtool). We found doubleverify.com
scripts being loaded on 517 websites of which 7 appeared in the
Alexa top 1000 sites (in our US1 dataset). However, since doublev-
erify.com evaluates ad impressions the presence of these scripts
is dependent on the ads that are served on a website, and hence
we see it on different sites in different crawls. For instance, in US2
dataset we found 509 sites loading the script from doubleverify.com.
The union of these datasets results in 881 unique sites loading the
script, of which 145 sites were common (Jaccard index 0.16). In
the EU1 dataset (European crawl), however, doubleverify.com was
not present on any of the 100K sites, indicating that the loading of
scripts may depend on the location of the visitor.

Some sensor reading scripts are served from the first party’s
domain, making the attribution to specific providers more difficult.
For instance, a highly obfuscated script that is present on popular
sites like homedepot.com and staples.com is always served on
the /_bm/async.js path under the first party (e.g., m.staples.com/_-
bm/async.js). This script sends encoded sensor data in a POST
request to the endpoint _bm/_data on the first-party site. A code
snippet is provided in appendix B (Listing 4). The prevalence of
these scripts was more or less similar as it is site dependent rather
than being ad dependent. We found 173 sites loading such scripts in
theUS1 dataset, 12 of which were ranked in the Alexa top 1000 sites.
For the US2 and EU1 dataset we found 140 and 158 sites loading
such scripts, respectively.

6 EFFICACY OF COUNTERMEASURES
In this section we study the overlap between scripts that access
sensors and scripts that perform fingerprinting. We then study the
effectiveness of privacy countermeasures such as ad blocking lists
as well as browser limitations on sensor APIs.

6.1 Fingerprinting Scripts
First, we will showcase to what extent scripts accessing sensor
APIs overlap with fingerprinting scripts. To detect fingerprinting
scripts we follow methodologies from existing literatures [1, 31],
which are also listed in Table 2. Table 8 highlights the percentage
of sensor accessing scripts that also utilize browser fingerprinting,
as captured by the features described in section 3.4. We calculate
the percentage of scripts accessing a given sensor that also perform
a particular type of fingerprinting. For example, 62.7% of scripts
that access motion sensors also engage in some form of browser
fingerprinting.

Table 8: Percentage of sensor accessing scripts that also en-
gage in fingerprinting. All columns except ‘Total’ are given
as percentage. The ‘Total’ column shows the number of dis-
tinct script URLs that access a certain sensor.

Canvas
FP

Canvas
Font FP

Audio
FP

WebRTC
FP

Battery
FP

Any
FP Total

Motion 56.7 0.2 19.8 6.8 5.6 62.7 501
Orientation 36.2 3.4 5.7 6.2 4.5 41.7 650
Proximity 2.1 0.0 47.9 0.0 49.0 51.0 96
Light 19.5 1.2 56.1 15.9 57.3 76.8 82

Table 9 showcases the numbers from the other angle: the fraction
of fingerprinting scripts that access different sensor APIs. We list
the percentage of distinct script URLs that engage in a particular
form of fingerprinting while accessing any of the sensors explored
in our study. Both of these tables indicate that there is a significant
overlap between the fingerprinting scripts and the scripts accessing
sensor APIs.

6.2 Ad Blocking and Tracking Protection Lists
We next inspect what fraction of these sensor-accessing scripts
would be blocked by different well known filtering lists used for ad
blocking and tracking protection: EasyList [27], EasyPrivacy [28]



Table 9: Percentage of fingerprinting scripts that also access
sensors. All columns except ‘Total’ are given as percentage.
The ‘Total’ column shows the number of distinct fingerprint-
ing script URLs that use a particular fingerprinting method.

Motion Orien-
tation

Proxi-
mity Light Any

sensor Total

Canvas FP 1.4 1.5 2.0 2.0 15.9 1991
Canvas Font FP 32.9 34.1 47.1 47.1 24.7 85
Audio FP 20.0 20.7 28.6 28.6 81.4 140
WebRTC FP 10.5 10.9 15.0 15.0 20.2 267
Battery FP 4.5 4.6 6.4 6.4 7.5 625

and Disconnect [25]. Table 10 highlight the percentage of tracking
scripts that would be blocked using each of these lists. In general,
we see that a significant portion of scripts that access sensors are
missed by the popular blacklists, which is in line with the previous
research on tracking protection lists [52].

Table 10: Percentage of script domains accessing device sen-
sors that are blocked by different filtering list.

Sensor Disconnect
blocked

EasyList
blocked

EasyPrivacy
blocked

Motion 1.8% 1.8% 2.9%
Orientation 3.6% 3.1% 3.1%
Proximity 6.0% 2.0% 4.0%
Light 2.9% 2.9% 8.6%

Any sensor 2.9% 2.5% 3.3%

6.3 Difference in Browser Behavior
To determine browser support for different sensor APIs and po-
tential restrictions for scripts in cross-origin iframes, we set up a
test page that accesses all four sensor APIs. We tested the latest
version of nine browsers listed in Table 11 as of Jan, 2018. Browsers
have minor differences with regards to which sensor they support
and how they block access from scripts embedded in cross-origin
iframes. Table 11 summarizes our findings. As shown in the table,
proximity and light sensors are only supported by Firefox.8 For
privacy reasons, Firefox and Safari do not allow scripts from cross-
origin iframes to access sensor data, which is in line with W3C
recommendation [80]. Privacy-geared browsers such as Firefox Fo-
cus and Brave fare worse than Firefox and Safari, as they both allow
access to orientation data from cross-origin iframes, where Firefox
Focus further allows access to motion data.

Testing the sensor API availability on insecure (HTTP) pages, we
found no differences in browsers’ behavior. We also tested whether
browsers have any access restrictions when running in private
browsing mode, and we found no difference when comparing to
normal browsing mode.9 Finally, to test whether the underlying
mobile platform has any effect on sensor availability, we tested iOS

8As of May 9, 2018 Mozilla released Firefox version 60, which disables proximity and
light sensor APIs; we used an earlier version of Firefox in our study.
9Note that Firefox Focus always runs in private browsing mode, so it does not have a
separate normal browsing mode.

versions of the browsers. We found that all browsers behave identi-
cal to Safari, as Apple requires browsers to use WebKit framework
to be listed on their app store [21].

Table 11: Browser support for different sensor APIs.

Browser Orientation∗ Motion∗ Proximity∗ Light∗

Chrome (✓, ✓) (✓, ✓) (✗, ✗) (✗, ✗)
Edge (✓, ✓) (✓, ✓) (✗, ✗) (✗, ✗)
Safari (✓, ✗) (✓, ✗) (✗, ✗) (✗, ✗)
Firefox (✓, ✗) (✓, ✗) (✓, ✗) (✓, ✗)
Brave (✓, ✓) (✓, ✗) (✗, ✗) (✗, ✗)
Focus (✓, ✓) (✓, ✓) (✗, ✗) (✗, ✗)
Dolphin (✓, ✓) (✓, ✓) (✗, ✗) (✗, ✗)
Opera Mini (✓, ✓) (✓, ✓) (✗, ✗) (✗, ✗)
UC Browser (✓, ✓) (✓, ✓) (✗, ✗) (✗, ✗)
∗ Each tuple representing (third-party, iframe) access right

We filed bug reports for Brave Android Browser, Firefox Focus
and Firefox for Android [12, 36–38] pointing out that they allow
sensor access on insecure pages, which is against W3C recommen-
dations. Firefox Focus engineers told us that they will have to wait
for Chromium/WebView to ship an update for this behavior to
change since Firefox Focus on Android uses Chromium under the
hood. Responding to the issue we filed for Firefox for Android,
Mozilla engineers briefly discussed the possibility of requiring user
permission for allowing sensor access. We did not get any response
to our issue from Brave engineers. We note that Brave Android is
also built on Chromium.

7 DISCUSSION AND RECOMMENDATIONS
Our analysis of crawling the Alexa top 100K sites indicates that
tracking scripts did not wait long to take advantage of sensor data,
something that is easily accessible without requiring any user per-
mission. By spoofing real sensor values we found that third-party
ad and analytics scripts are sending raw sensor data to remote
servers. Moreover, given that existing countermeasures for mo-
bile platforms are not effective at blocking trackers, we make the
following recommendations.
• W3C’s recommendation for disabling sensor access on cross-
origin iframes [80] will limit the access from untrusted third-
party scripts and is a step in the right direction. However,
Safari and Firefox are the only two browsers that follow this
recommendation. Our measurements indicate that scripts
that access sensor APIs are frequently embedded in cross-
origin iframes (67.4% of the 31 444 cases). This shows that
W3C’s mitigation would be effective at curbing the exposure
to untrusted scripts. Allowing sensor access on insecure
pages is another issue where browsers do not follow the
W3C spec: all nine browsers we studied allowed access to
sensors on insecure (HTTP) pages.
• Feature Policy API [16], if deployed, will allow publishers
to selectively disable JavaScript APIs. Publisher may disable
sensor APIs using this API to prevent potential misuses by
the third-party scripts they embed.



• Provide low resolution sensor data by default, and require
user permission for higher resolution sensor data.
• To improve user awareness and curb surreptitious sensor
access, provide users with a visual indication that the sensor
data is being accessed.
• Require user permission to access sensor data in private
browsing mode, limit resolution, or disable sensor access all
together.

8 LIMITATIONS
Our clustering analysis depends on OpenWPM’s instrumentation
data to attribute JavaScript behavior to individual scripts. There are
potential imperfections in this attribution task. First, some websites
concatenate several JavaScript files and libraries into a single file.
These scripts would be seen as one script (URL) to OpenWPM’s
instrumentation, potentially adding noise in the clustering stage.
Second, when attributing JavaScript function calls and property
accesses to individual scripts, we use the script URL that appears
at the top of the calling stack following the prior work done by
Englehardt and Narayanan [31]. Under some circumstances, this ap-
proach may be misleading. For instance, when a script uses jQuery
library to listen to sensor events, we attribute the sensor related
feature to jQuery as it appears at the top of the calling stack.

OpenWPM-Mobile uses OpenWPM’s JavaScript instrumenta-
tion, which captures function calls made and browser properties
accessed at runtime (Section 3.4). This approach has the advantage
of capturing the behavior of obfuscated code, but may miss code
segments that do not execute during a page visit.

We manually analyzed a random subsample of scripts instead
of studying all scripts per cluster. While this process may miss
some misbehaving scripts, we believe the outcomes will not be
affected as the average intra- and inter-cluster similarity scores are
significantly apart.

OpenWPM-Mobile does not store in-line scripts. We found that
only 12.1% (111 of 916) of the scripts were in-line. We were able to
re-crawl sites that included the in-line scripts and stored them for
the clustering step.

There are many ways in which trackers can exfiltrate sensor data,
for example, using encryption or computing and sending statistics
on the sensor data as we present in section 5.5. Therefore, our
results on sensor data exfiltration should be taken as lower bounds.

Using fingerprinting test suites fingerprintjs2 [84] and EFF’s
Panopticlick [30], we verified that OpenWPM-Mobile’s browser
fingerprint matches that of a Firefox for Android running on a real
smartphone to the best extent possible. We also observed several ad
platforms identify our browser as mobile and start serving mobile
ads. However, there may still be ways, for example, detecting the
lack of hand movements in the sensor data stream could potentially
help websites detect OpenWPM-Mobile as an automated desktop
browser and treat differently.

9 CONCLUSION
Our large-scale measurement of sensor API usage on the mobile
web reveals that device sensors are being used for purposes other
than what W3C standardization body had intended. We found that
a vast majority of third-party scripts are accessing sensor data for

measuring ad interactions, verifying ad impressions, and tracking
devices. Our analysis uncovered several scripts that are sending
raw sensor data to remote servers. While it is not possible to de-
termine the exact purpose of this sensor data exfiltration, many
of these scripts engage in tracking or web analytic services. We
also found that existing countermeasures such as Disconnect, Easy-
List and EasyPrivacy were not effective at blocking such tracking
scripts. Our evaluation of nine popular mobile browsers has shown
that browsers, including the privacy-oriented Firefox Focus and
Brave, commonly fail to implement the mitigation guidelines rec-
ommended by the W3C against the misuse of sensor data. Based
on our findings, we recommend browser vendors to rethink the
risks of exposing sensitive sensors without any form of access con-
trol mechanism in place. Also, website owners should be given
more options to limit the sensor misuse from untrusted third-party
scripts.
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A CLUSTERING PSEUDO-CODE

1 # check if clusters can be combined

2 def pairwise_cluster_comparison(features, clusters):

3 pairwise_merge = {}

4 for i in sorted(set(clusters)):
5 for j in sorted(set(clusters)):
6 if i == j or i == -1 or j == -1: continue
7 labels = np.copy(clusters) # restore original labels

8 labels[labels == j] = i

9 inds = np.where(labels >= 0)[0] # only consider non-noisy samples

10 val = silhouette_score(features[inds,:], labels[inds])

11 pairwise_merge[(i,j)] = val

12 return pairwise_merge

13 # classify noisy samples

14 def classification(features, labels, thres, limit=None):

15 clusters = np.copy(labels)

16 clf = RandomForestClassifier(n_estimators=100, max_features='auto')

17 X_train = features[np.where(labels >= 0), :]

18 y_train = labels[np.where(labels >= 0), :]

19 X_test = features[np.where(labels == -1), :]

20 y_test = labels[np.where(labels == -1), :]

21 clf.fit(X_train, y_train)

22 res = clf.predict(X_test)

23 prob = clf.predict_proba(X_test)

24 max_prob = np.max(prob, axis=1) # only take the max prob value

25 for i in range(min(limit, len(prob))):
26 ind = np.argmax(max_prob)

27 if max_prob[ind] > thres:

28 y_test[ind] = res[ind]

29 max_prob[ind] = 0.0 # replace the prob

30 clusters[clusters == -1] = y_test

31 return clusters

32 # Phase 1: Clustering scripts using DBSCAN

33 dbscan = DBSCAN(eps=0.1, min_samples=3, metric='dice', algorithm='auto')

34 labels = dbscan.fit(script_features).labels_

35 # Phase 2: Merge clusters

36 first_max = None, last_max = None

37 while True:

38 res = pairwise_cluster_comparison(script_features, labels)

39 last_max = max(res.values())
40 maxs = [i for i, j in res.items() if j == last_max]

41 first_max = last_max if first_max == None

42 if first_max - last_max < 0.05:

43 largest_cluster, selected = 0, None

44 for x,y in maxs:

45 f1 = len(np.where(labels == x)[0])

46 f2 = len(np.where(labels == y)[0])

47 if largest_cluster < max(f1, f2):

48 selected = (x, y) if f1 > f2 else (y, x)

49 largest_cluster = max(f1, f2)

50 labels[labels == selected[1]] = selected[0]

51 else: break
52 # Phase 3: Classify noisy samples

53 final_label = None

54 while True:

55 nlabels = classification(script_features, labels, 0.7, 5)

56 if np.array_equal(nlabels, labels):

57 final_label = labels

58 break
59 else: labels = nlabels

Listing 1: Code for different phases of clustering scripts.



B EXAMPLE SENSOR-ACCESSING SCRIPTS

1 dvObj.pubSub.subscribe(rtnName, impId, 'SenseTag_RTN', function() {

2 try {

3 var maxTimesToSend = 2;

4 var avgX = 0, avgY = 0, avgZ = 0, avgX2 = 0, avgY2 = 0, avgZ2 = 0, countAcc = 0, accInterval = 0;

5 function dvDoMotion() {

6 try {

7 if (maxTimesToSend <= 0) {

8 window.removeEventListener('devicemotion', dvDoMotion, false);
9 return;
10 }

11 var motionData = event.accelerationIncludingGravity;

12 if ((motionData.x) || (motionData.y) || (motionData.z)) {

13 var isError = 0; var x = 0; var y = 0; var z = 0;

14 if (motionData.x) x = motionData.x;

15 else isError += 1;

16 if (motionData.y) y = motionData.y;

17 else isError += 1;

18 if (motionData.z) z = motionData.z;

19 else isError += 1;

20 avgX = ((avgX * countAcc) + x) / (countAcc + 1);

21 avgX2 = ((avgX2 * countAcc) + (x * x)) / (countAcc + 1);

22 avgY = ((avgY * countAcc) + y) / (countAcc + 1);

23 avgY2 = ((avgY2 * countAcc) + (y * y)) / (countAcc + 1);

24 avgZ = ((avgZ * countAcc) + z) / (countAcc + 1);

25 avgZ2 = ((avgZ2 * countAcc) + (z * z)) / (countAcc + 1);

26 countAcc++;

27 accInterval = event.interval;

28 if (countAcc % 400 == 1) {

29 maxTimesToSend--;

30 sensorObj = {};

31 sensorObj['MED_AMtX'] = Math.max(Math.min(avgX, 10000), -10000).toFixed(7);

32 sensorObj['MED_AMtY'] = Math.max(Math.min(avgY, 10000), -10000).toFixed(7);

33 sensorObj['MED_AMtZ'] = Math.max(Math.min(avgZ, 10000), -10000).toFixed(7);

34 sensorObj['MED_AVrX'] = Math.max(Math.min((avgX2 - avgX * avgX), 10000), -10000).toFixed(7);

35 sensorObj['MED_AVrY'] = Math.max(Math.min((avgY2 - avgY * avgY), 10000), -10000).toFixed(7);

36 sensorObj['MED_AVrZ'] = Math.max(Math.min((avgZ2 - avgZ * avgZ), 10000), -10000).toFixed(7);

37 sensorObj['MED_ANum'] = countAcc;

38 sensorObj['MED_AInterval'] = accInterval;

39 dvObj.registerEventCall(impId, sensorObj, 2000, true);
40 }

41 }

42 } catch (e) {}

43 }

44 setTimeout(function() {

45 try {

46 if (window.addEventListener == undefined) return;
47 window.addEventListener('devicemotion', dvDoMotion);

48 } catch (e) {}; }, 3000);

49 } catch (e) {};

50 });

Listing 2: JavaScript snippet from doubleverify.com computing average and variance of accelerometer data.

" https : // tps10212. doubleverify . com/event. gif ?impid=0b86b20d52a84923a41d85da169fd97f&msrdp=1&naral=80&vct=1&engalms=83&engisel=1&
MED_AMtX=2.8139038&MED_AMtY=7.6222534&MED_AMtZ=4.0931549&MED_AVrX=0.0000000&MED_AVrY=0.0000000&MED_AVrZ=0.000
0000&MED_ANum=1&MED_AInterval=16.666&cbust=1508977547663635"

Listing 3: doubleverify.com script sending average and variance of sensor data as URL parameters to their servers.



1 # collecting sensor data

2 cdma : function (t) {

3 try {

4 if (cf[_ac[109]] < cf[_ac[254]] && cf[_ac[497]] < 2 && t) {

5 var e = cf[_ac[374]]() - cf[_ac[253]], c = -1, n = -1, a = -1;

6 t[_ac[157]] && (

7 c = cf[_ac[554]](t[_ac[157]][_ac[413]]),

8 n = cf[_ac[554]](t[_ac[157]][_ac[190]]),

9 a = cf[_ac[554]](t[_ac[157]][_ac[524]]) );

10 var o = -1, f = -1, i = -1;

11 t[_ac[310]] && (

12 o = cf[_ac[554]](t[_ac[310]][_ac[413]]),

13 f = cf[_ac[554]](t[_ac[310]][_ac[190]]),

14 i = cf[_ac[554]](t[_ac[310]][_ac[524]]) );

15 var r = -1, d = -1, s = 1;

16 t[_ac[526]] && (

17 r = cf[_ac[554]](t[_ac[526]][_ac[62]]),

18 d = cf[_ac[554]](t[_ac[526]][_ac[548]]),

19 s = cf[_ac[554]](t[_ac[526]][_ac[515]]) );

20 var u = cf[_ac[109]] + _ac[66] + e + _ac[66] + c + _ac[66] + n + _ac[66] + a +

21 _ac[66] + o + _ac[66] + f + _ac[66] + i + _ac[66] + r + _ac[66] + d + _ac[66] +

22 s + _ac[379];

23 cf[_ac[496]] = cf[_ac[496]] + u,

24 cf[_ac[68]] += e,

25 cf[_ac[335]] = cf[_ac[335]] + cf[_ac[109]] + e,

26 cf[_ac[109]]++

27 }

28 cf[_ac[69]] && cf[_ac[109]] > 1 && cf[_ac[419]] < cf[_ac[626]] && (

29 cf[_ac[120]] = 7,

30 cf[_ac[609]](),

31 cf[_ac[194]](!0),

32 cf[_ac[340]] = 1,

33 cf[_ac[419]]++ ),

34 cf[_ac[497]]++

35 } catch (t) {}

36 },

37 # sending encoded data to remote server

38 apicall_bm: function (t, e, c) {

39 var n;

40 void 0 !== window[_ac[175]]

41 ? n = new XMLHttpRequest

42 : void 0 !== window[_ac[637]]

43 ? (n = new XDomainRequest, n[_ac[158]] = function () {

44 this[_ac[269]] = 4,

45 this[_ac[567]] instanceof Function && this[_ac[567]]()})
46 : n = new ActiveXObject(_ac[450]),

47 n[_ac[587]](_ac[291], t, e),

48 void 0 !== n[_ac[360]] && (n[_ac[360]] = !0);

49 var a = cf[_ac[258]](cf[_ac[75]] + _ac[85]);

50 cf[_ac[302]] = _ac[123] + a + _ac[611],

51 void 0 !== n[_ac[279]] && (

52 n[_ac[279]](_ac[534], _ac[115]),

53 cf[_ac[302]] = _ac[538]);

54 var o = _ac[266] + cf[_ac[261]] + _ac[611] + cf[_ac[302]] + _ac[100];

55 n[_ac[567]] = function () {

56 n[_ac[269]] > 3 && c && c(n)

57 },

58 n[_ac[101]](o)

59 },

Listing 4: Obfuscated JavaScript snippet from homedepot.com/_bm/async.js collecting sensor data



C SENSOR DATA EXFILTRATION: EXAMPLE PAYLOADS

"parameter" : url$0$https : //mobile. reuters . com/", " referrer$ 0$" , " ancestorOrigins$0$n/a" , "video$0$360x592x24", "frame$0$0", "hidden$0$0", "
visibilityState$ 1 $visible " , "window$1$344x521","inner$1$360x521","outer$1$360x592", " localStorage$ 3$1" , " sessionStorage$3$1" , "

appCodeName$4$Mozilla","appName$4$Netscape","appVersion$4$5.0 (Android 7.0)" , "cookieEnabled$4$true" , "doNotTrack$4$unspecified" , "
hardwareConcurrency$4$8","language$5$en−US","platform$5$Linux armv7l","product$5$Gecko","productSub$5$20100101","sendBeacon$5$1",
"userAgent$5$Mozilla/5 .0 (Android 7.0 ; Mobile; rv :55 .0) Gecko/55.0 Firefox /55.0" , "vendor$5$", "vendorSub$5$"," fontrender$8$1" , "
webgl$239$1","time$240$1526528127627","timezone$240$0", "plugins$240$None","time− fetchStart$ 241$321" , "time−domainLookupStart$241
$324","time−domainLookupEnd$241$324","time−connectStart$241$324","time−connectEnd$241$339","time−requestStart$241$367","time−
responseStart$241$383","time−responseEnd$241$414","time−domLoading$241$418","time−domInteractive$241$4533","time−
domContentLoadedEventStart$241$4828","time−domContentLoadedEventEnd$241$4966","navigation−redirectCount$241$0","navigation−
type$241$navigate","globals−time$266$0.705","globals$269$a8bb2f85","document−time$272$0.43","document$274$0a886779","clock$288$662","
intersection$ 293$n/a" , " battery$299$1 1 0 Infinity " , " devicelight$ 325$987" , "framerate$461$10" , " sort$763$121.685" , "deviceproximity$
817$3" , "userproximity$1295$near" , " orientation$ 1297$43.123402478330654 32.98760746072672 21.654300663242278" , "motion$1305$
0.12560407138550994 -0.12339847737456243 -0.18449644504208473" , "audiocontext$2044$d554bfaa

Listing 5: Orientation,motion, light and proximity data is sent to https://api-34-216-170-51.b2c.com/api/x?parameter=[...]
on reuters.com website

" { " { \" is_supposed_final_message \" : false , \"message_number\":1, \"message_time\":7736, \" query_string \" : \" e" : "36" , "ue" : "1" , "uu": "1" , "qa" : "
360" , "qb" : "592" , "qc" : "0" , "qd" : "0" , "qf" : "360" , "qe" : "521" , "qh": "360" , "qg" : "592" , "qi " : "360" , "qj " : "592" , "ql " : "" , "qo" : "0" , "qm":"0" , ...
, \" user_agent \" : \" Mozilla /5 .0 (Android 7.0 ; Mobile; rv :55 .0) Gecko/55.0 Firefox /55.0 \" , ... , \" location \" : \" https : // i . stuff .co.nz
/\" , \" referrer \" : \" https : //www.stuff.co.nz /\" , ... , \" numbers\":[−9986.46115497749,9007199254740994,6 .283185307179586,5 .43656365691
809,0 .9150885074842403,−1.8369701987210297e−16,−0.5401928810015185,5.551115123125783e−16,7.600875484570224], \" plugins \" : \" 101574
\" , \" graphics_card \" : { } , \" cpu_cores \" :8 , \" canvas_render\" :1490412693, \"webgl_render\" :3707405031, \" installed_fonts \" : [ \"Dotum\",
\"DotumChe\",\"Gulim\", \"GulimChe\", \"Malgun Gothic\" , \"Meiryo UI\" , \" Microsoft JhengHei\" , \" Microsoft YaHei\" , \"MONO\",\"MS UI
Gothic\"], ... , \" RTCPeerConnection\":\"RTCPeerConnection\",\"WebSocket\": \"WebSocket\", \" unloadEventStart \" :0 , \" unloadEventEnd\":0 ,
\" sahimap\" : \" TypeError: window.SahiHashMap is undefined\"} , \" color_depth \" :24 , \" min_safe_int \" :−9007199254740991,\"gz \" : false , \"
gz_cde\" : false , \" input \" : { \" key_times\" : [] , \" key_delta_mean\":−1, \" key_delta_var \" :−1, \"mouse\":[] , \"mousedowns\":[], \"
orientation \" : [[1526540170271,[ false ,43.123406989295376 ,32.98760380966044 ,21.654305428432068]] , [1526540175119,[ false ,
43.123405666163535 ,32.987604652675195 ,21.654303695580264]]] , ... } " } "

Listing 6: Orientation data is sent to https://px2.moatads.com/pixel.gif?v=[...] on stuff.co.nz website

{payload=[{ " t " : "PX164","d" : { "PX165":["0.12560246652278528 , -0.12339765619546963 , -0.18449742637532154" , "0.12560876871457533 ,
-0.12339147047919652 , -0.18449095921522524" , "0.1256049922328881 , -0.12339788204758717 , -0.1844980715878096" , "

0.12560647137074932 , -0.12339009836285393 , -0.1844992891051791"] , "PX63":"Linux armv7l" , "PX371":true } } ]&appId=PXpHWOqUmu&tag
=v3.19.1&uuid=b3b264b0−5987−11e8−8ef7−216942b9c24f&ft=24&seq=3&cs=a829d69e16358d1daa46d1266c00266e44d900e411d6666bb1b4d9d9
08e1827c&pc=7889002194399290&sid=b3b8f462−5987−11e8−ae82−6db5f4392e69&vid=b3b8f460−5987−11e8−ae82−6db5f4392e69}

Listing 7: Motion data are sent to https://www.kayak.com/px/xhr/api/v1/collector in base64-encoded form (decoded here)
on kayak.com website

https://api-34-216-170-51.b2c.com/api/x?parameter=[...]
https://px2.moatads.com/pixel.gif?v=[...]
https://www.kayak.com/px/xhr/api/v1/collector
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